Package index
-
Isq()
- I-squared calculation
-
add_metadata()
- Add meta data to extracted data
-
add_rsq()
- Estimate r-square of each association
-
allele_frequency()
- Estimate allele frequency from SNP
-
available_outcomes()
- Get list of studies with available GWAS summary statistics through API
-
clump_data()
- Perform LD clumping on SNP data
-
combine_all_mrresults()
- Combine all mr results
-
combine_data()
- Combine data
-
contingency()
- Obtain 2x2 contingency table from marginal parameters and odds ratio
-
convert_outcome_to_exposure()
- Convert outcome data to exposure data
-
dat_to_MRInput()
- Convert TwoSampleMR format to MendelianRandomization format
-
dat_to_RadialMR()
- Convert dat to RadialMR format
-
default_parameters()
- List of parameters for use with MR functions
-
directionality_test()
- Perform MR Steiger test of directionality
-
effective_n()
- Estimate the effective sample size in a case control study
-
enrichment()
- Perform enrichment analysis
-
enrichment_method_list()
- Get list of available p-value enrichment methods
-
estimate_trait_sd()
- Estimate trait SD by obtaining beta estimates from z-scores and finding the ratio with original beta values
-
extract_instruments()
- Find instruments for use in MR from the MR Base database
-
extract_outcome_data()
- Supply the output from
read_exposure_data()
and all the SNPs therein will be queried against the requested outcomes in remote database using API.
-
fishers_combined_test()
- Fisher's combined test
-
forest_plot()
- Forest plot for multiple exposures and multiple outcomes
-
forest_plot_1_to_many()
- 1-to-many forest plot
-
forest_plot_basic2()
- A basic forest plot
-
format_1_to_many()
- Format MR results for a 1-to-many forest plot
-
format_aries_mqtl()
- Get data from methylation QTL results
-
format_data()
- Read exposure or outcome data
-
format_gtex_eqtl()
- Get data from eQTL catalog into correct format
-
format_gwas_catalog()
- Get data selected from GWAS catalog into correct format
-
format_metab_qtls()
- Get data from metabolomic QTL results
-
format_mr_results()
- Format MR results for forest plot
-
format_proteomic_qtls()
- Get data from proteomic QTL results
-
generate_odds_ratios()
- Generate odds ratios
-
get_p_from_r2n()
- Calculate p-value from R-squared and sample size
-
get_population_allele_frequency()
- Estimate the allele frequency in population from case/control summary data
-
get_r_from_bsen()
- Estimate R-squared from beta, standard error and sample size
-
get_r_from_lor()
- Estimate proportion of variance of liability explained by SNP in general population
-
get_r_from_pn()
- Calculate variance explained from p-values and sample size
-
get_se()
- Get SE from effect size and p-value
-
harmonise_data()
- Harmonise the alleles and effects between the exposure and outcome
-
harmonise_ld_dat()
- Harmonise LD matrix against summary data
-
ld_matrix()
- Get LD matrix for list of SNPs
-
ldsc_h2()
- Univariate LDSC
-
ldsc_rg()
- Bivariate LDSC
-
make_dat()
- Convenient function to create a harmonised dataset
-
mr()
- Perform all Mendelian randomization tests
-
mr_density_plot()
- Density plot
-
mr_egger_regression()
- Egger's regression for Mendelian randomization
-
mr_egger_regression_bootstrap()
- Run bootstrap to generate standard errors for MR
-
mr_forest_plot()
- Forest plot
-
mr_funnel_plot()
- Funnel plot
-
mr_heterogeneity()
- Get heterogeneity statistics
-
mr_ivw()
- Inverse variance weighted regression
-
mr_ivw_fe()
- Inverse variance weighted regression (fixed effects)
-
mr_ivw_mre()
- Inverse variance weighted regression (multiplicative random effects model)
-
mr_ivw_radial()
- Radial IVW analysis
-
mr_leaveoneout()
- Leave one out sensitivity analysis
-
mr_leaveoneout_plot()
- Plot results from leaveoneout analysis
-
mr_median()
- MR median estimators
-
mr_meta_fixed()
- Perform 2 sample IV using fixed effects meta analysis and delta method for standard errors
-
mr_meta_fixed_simple()
- Perform 2 sample IV using simple standard error
-
mr_meta_random()
- Perform 2 sample IV using random effects meta analysis and delta method for standard errors
-
mr_method_list()
- Get list of available MR methods
-
mr_mode()
- MR mode estimators
-
mr_moe()
- Mixture of experts
-
mr_penalised_weighted_median()
- Penalised weighted median MR
-
mr_pleiotropy_test()
- Test for horizontal pleiotropy in MR analysis
-
mr_raps()
- Robust adjusted profile score
-
mr_report()
- Generate MR report
-
mr_rucker()
- MR Rucker framework
-
mr_rucker_bootstrap()
- Run rucker with bootstrap estimates
-
mr_rucker_cooksdistance()
- MR Rucker with outliers automatically detected and removed
-
mr_rucker_jackknife()
- Run rucker with jackknife estimates
-
mr_scatter_plot()
- Create scatter plot with lines showing the causal estimate for different MR tests
-
mr_sign()
- MR sign test
-
mr_simple_median()
- Simple median method
-
mr_simple_mode()
- MR simple mode estimator
-
mr_simple_mode_nome()
- MR simple mode estimator (NOME)
-
mr_singlesnp()
- Perform 2 sample MR on each SNP individually
-
mr_steiger()
- MR Steiger test of directionality
-
mr_steiger2()
- MR Steiger test of directionality
-
mr_two_sample_ml()
- Maximum likelihood MR method
-
mr_uwr()
- Unweighted regression
-
mr_wald_ratio()
- Perform 2 sample IV using Wald ratio.
-
mr_weighted_median()
- Weighted median method
-
mr_weighted_mode()
- MR weighted mode estimator
-
mr_weighted_mode_nome()
- MR weighted mode estimator (NOME)
-
mr_wrapper()
- Perform full set of MR analyses
-
mv_basic()
- Perform basic multivariable MR
-
mv_extract_exposures()
- Extract exposure variables for multivariable MR
-
mv_extract_exposures_local()
- Attempt to perform MVMR using local data
-
mv_harmonise_data()
- Harmonise exposure and outcome for multivariable MR
-
mv_ivw()
- Perform IVW multivariable MR
-
mv_lasso_feature_selection()
- Apply LASSO feature selection to mvdat object
-
mv_multiple()
- Perform IVW multivariable MR
-
mv_residual()
- Perform basic multivariable MR
-
mv_subset()
- Perform multivariable MR on subset of features
-
power_prune()
- Power prune
-
read_exposure_data()
- Read exposure data
-
read_outcome_data()
- Read outcome data
-
run_mr_presso()
- Wrapper for MR-PRESSO
-
run_mrmix()
- Perform MRMix analysis on harmonised dat object
-
size.prune()
- Size prune
-
sort_1_to_many()
- Sort results for 1-to-many forest plot
-
split_exposure()
- Split exposure column
-
split_outcome()
- Split outcome column
-
standardise_units()
- Try to standardise continuous traits to be in standard deviation units
-
steiger_filtering()
- Steiger filtering function
-
steiger_sensitivity()
- Evaluate the Steiger test's sensitivity to measurement error
-
subset_on_method()
- Subset MR-results on method
-
trim()
- Trim function to remove leading and trailing blank spaces
-
weighted_median()
- Weighted median method
-
weighted_median_bootstrap()
- Calculate standard errors for weighted median method using bootstrap