Skip to contents

All functions

Isq()
I-squared calculation
add_metadata()
Add meta data to extracted data
add_rsq()
Estimate r-square of each association
allele_frequency()
Estimate allele frequency from SNP
available_outcomes()
Get list of studies with available GWAS summary statistics through API
clump_data()
Perform LD clumping on SNP data
combine_all_mrresults()
Combine all mr results
combine_data()
Combine data
contingency()
Obtain 2x2 contingency table from marginal parameters and odds ratio
convert_outcome_to_exposure()
Convert outcome data to exposure data
dat_to_MRInput()
Convert TwoSampleMR format to MendelianRandomization format
dat_to_RadialMR()
Convert dat to RadialMR format
default_parameters()
List of parameters for use with MR functions
directionality_test()
Perform MR Steiger test of directionality
effective_n()
Estimate the effective sample size in a case control study
enrichment()
Perform enrichment analysis
enrichment_method_list()
Get list of available p-value enrichment methods
estimate_trait_sd()
Estimate trait SD by obtaining beta estimates from z-scores and finding the ratio with original beta values
extract_instruments()
Find instruments for use in MR from the MR Base database
extract_outcome_data()
Supply the output from read_exposure_data() and all the SNPs therein will be queried against the requested outcomes in remote database using API.
fishers_combined_test()
Fisher's combined test
forest_plot()
Forest plot for multiple exposures and multiple outcomes
forest_plot_1_to_many()
1-to-many forest plot
forest_plot_basic2()
A basic forest plot
format_1_to_many()
Format MR results for a 1-to-many forest plot
format_aries_mqtl()
Get data from methylation QTL results
format_data()
Read exposure or outcome data
format_gtex_eqtl()
Get data from eQTL catalog into correct format
format_gwas_catalog()
Get data selected from GWAS catalog into correct format
format_metab_qtls()
Get data from metabolomic QTL results
format_mr_results()
Format MR results for forest plot
format_proteomic_qtls()
Get data from proteomic QTL results
generate_odds_ratios()
Generate odds ratios
get_p_from_r2n()
Calculate p-value from R-squared and sample size
get_population_allele_frequency()
Estimate the allele frequency in population from case/control summary data
get_r_from_bsen()
Estimate R-squared from beta, standard error and sample size
get_r_from_lor()
Estimate proportion of variance of liability explained by SNP in general population
get_r_from_pn()
Calculate variance explained from p-values and sample size
get_se()
Get SE from effect size and p-value
harmonise_data()
Harmonise the alleles and effects between the exposure and outcome
harmonise_ld_dat()
Harmonise LD matrix against summary data
ld_matrix()
Get LD matrix for list of SNPs
ldsc_h2()
Univariate LDSC
ldsc_rg()
Bivariate LDSC
make_dat()
Convenient function to create a harmonised dataset
mr()
Perform all Mendelian randomization tests
mr_density_plot()
Density plot
mr_egger_regression()
Egger's regression for Mendelian randomization
mr_egger_regression_bootstrap()
Run bootstrap to generate standard errors for MR
mr_forest_plot()
Forest plot
mr_funnel_plot()
Funnel plot
mr_heterogeneity()
Get heterogeneity statistics
mr_ivw()
Inverse variance weighted regression
mr_ivw_fe()
Inverse variance weighted regression (fixed effects)
mr_ivw_mre()
Inverse variance weighted regression (multiplicative random effects model)
mr_ivw_radial()
Radial IVW analysis
mr_leaveoneout()
Leave one out sensitivity analysis
mr_leaveoneout_plot()
Plot results from leaveoneout analysis
mr_median()
MR median estimators
mr_meta_fixed()
Perform 2 sample IV using fixed effects meta analysis and delta method for standard errors
mr_meta_fixed_simple()
Perform 2 sample IV using simple standard error
mr_meta_random()
Perform 2 sample IV using random effects meta analysis and delta method for standard errors
mr_method_list()
Get list of available MR methods
mr_mode()
MR mode estimators
mr_moe()
Mixture of experts
mr_penalised_weighted_median()
Penalised weighted median MR
mr_pleiotropy_test()
Test for horizontal pleiotropy in MR analysis
mr_raps()
Robust adjusted profile score
mr_report()
Generate MR report
mr_rucker()
MR Rucker framework
mr_rucker_bootstrap()
Run rucker with bootstrap estimates
mr_rucker_cooksdistance()
MR Rucker with outliers automatically detected and removed
mr_rucker_jackknife()
Run rucker with jackknife estimates
mr_scatter_plot()
Create scatter plot with lines showing the causal estimate for different MR tests
mr_sign()
MR sign test
mr_simple_median()
Simple median method
mr_simple_mode()
MR simple mode estimator
mr_simple_mode_nome()
MR simple mode estimator (NOME)
mr_singlesnp()
Perform 2 sample MR on each SNP individually
mr_steiger()
MR Steiger test of directionality
mr_steiger2()
MR Steiger test of directionality
mr_two_sample_ml()
Maximum likelihood MR method
mr_uwr()
Unweighted regression
mr_wald_ratio()
Perform 2 sample IV using Wald ratio.
mr_weighted_median()
Weighted median method
mr_weighted_mode()
MR weighted mode estimator
mr_weighted_mode_nome()
MR weighted mode estimator (NOME)
mr_wrapper()
Perform full set of MR analyses
mv_basic()
Perform basic multivariable MR
mv_extract_exposures()
Extract exposure variables for multivariable MR
mv_extract_exposures_local()
Attempt to perform MVMR using local data
mv_harmonise_data()
Harmonise exposure and outcome for multivariable MR
mv_ivw()
Perform IVW multivariable MR
mv_lasso_feature_selection()
Apply LASSO feature selection to mvdat object
mv_multiple()
Perform IVW multivariable MR
mv_residual()
Perform basic multivariable MR
mv_subset()
Perform multivariable MR on subset of features
power_prune()
Power prune
read_exposure_data()
Read exposure data
read_outcome_data()
Read outcome data
run_mr_presso()
Wrapper for MR-PRESSO
run_mrmix()
Perform MRMix analysis on harmonised dat object
size.prune()
Size prune
sort_1_to_many()
Sort results for 1-to-many forest plot
split_exposure()
Split exposure column
split_outcome()
Split outcome column
standardise_units()
Try to standardise continuous traits to be in standard deviation units
steiger_filtering()
Steiger filtering function
steiger_sensitivity()
Evaluate the Steiger test's sensitivity to measurement error
subset_on_method()
Subset MR-results on method
trim()
Trim function to remove leading and trailing blank spaces
weighted_median()
Weighted median method
weighted_median_bootstrap()
Calculate standard errors for weighted median method using bootstrap