
Package index
Metaboprep Object
The main S7 class behind the metaboprep R package along with class helper functions. A container for measurement, sample, and feature data.
-
Metaboprep() - Metaboprep Object
-
summary.Metaboprep - Summary Method for Metaboprep Object
-
add_layer() - Add a Layer of Data (internal use)
-
read_metabolon() - Read Metabolon Data
-
read_nightingale() - Read Nightingale Data (format 1)
-
read_olink() - Read and Process Olink NPX Data File
-
read_somalogic() - Read and Process SomaLogic adat file
-
available_data_formats() - List Available Data Formats
-
export() - Export Data from a Metaboprep Object
-
export_comets() - Export Data to `COMETS` format
-
export_metaboanalyst() - Export Data to `MetaboAnalyst` format
-
export_metaboprep() - Export Data to `Metaboprep` format
-
summarise() - Summary Statistics
-
feature_summary() - Feature Summary Statistics
-
sample_summary() - Sample Summary Statistics
-
pc_and_outliers() - Principal Component Analysis
-
tree_and_independent_features() - Identify Independent Features in a Numeric Matrix
-
quality_control() - Metabolite Quality Control
-
available_report_templates() - List Available Report Templates
-
generate_report() - Generate Output Report
-
run_metaboprep1() - Metaboprep 1 pipeline
-
shiny_app() - Metaboprep Shiny App
-
batch_normalise() - Batch Normalisation
-
feature_describe() - Summary Statistics for Features
-
missingness() - Estimate Missingness
-
outlier_detection() - Identify indexes of outliers in data
-
outliers() - Identify Outliers
-
total_peak_area() - Estimates total peak abundance
-
continuous_power_plot() - continuous trait power analysis plot
-
multivariate_anova() - multivariate analysis
-
cramerV() - Cramer's V (phi)
-
eval.power.binary.imbalanced() - Estimate power for a binary variable in an imbalanced design
-
eval.power.cont() - estimate power for continuous variable
-
find.PA.effect.sizes.2.sim() - identify effect sizes
-
find.cont.effect.sizes.2.sim() - identify continuos trait effect sizes
-
imbalanced_power_plot() - binary trait imbalanced design power analysis plot
-
variable_by_factor() - ggplot2 violin plot
-
clean_names() - Standardize Column or Feature Names