A simple wrapper function.
Using a summary set, identify set of instruments for the traits, and peform SEM MR to test the association across the population.
Methods
Method import()
Migrate the results from a previous CAMERA
Arguments
x
R6 Environment created for CAMERA. Default = x
Method import_from_local()
Usage
CAMERA$import_from_local(
instrument_raw,
instrument_outcome,
instrument_regions,
instrument_outcome_regions,
exposure_ids,
outcome_ids,
pops,
...
)
Method new()
Create a new dataset and initialise an R interface
Usage
CAMERA$new(
exposure_ids = NULL,
outcome_ids = NULL,
pops = NULL,
bfiles = NULL,
plink = NULL,
radius = NULL,
clump_pop = NULL,
x = NULL
)
Arguments
exposure_ids
Exposures IDs obtained from IEU GWAS database (https://gwas.mrcieu.ac.uk/) for each population
outcome_ids
Outcome IDs obtained from IEU GWAS database (https://gwas.mrcieu.ac.uk/) for each population
pops
Ancestry information for each population (i.e. AFR, AMR, EUR, EAS, SAS)
bfiles
Locations of LD reference files for each population (Download from: http://fileserve.mrcieu.ac.uk/ld/1kg.v3.tgz)
plink
Location of executable plink (ver.1.90 is recommended)
radius
Genomic window size to extract SNPs
clump_pop
Reference population for clumping
x
Import data where available
Method instrument_heterogeneity()
Usage
CAMERA$instrument_heterogeneity(
instrument = self$instrument_raw,
alpha = "bonferroni",
method = "ivw",
outlier_removal = FALSE
)
Method estimate_instrument_specificity()
Usage
CAMERA$estimate_instrument_specificity(
instrument,
alpha = "bonferroni",
winnerscurse = FALSE
)
Method replication_evaluation()
Usage
CAMERA$replication_evaluation(
instrument = self$instrument_raw,
ld = self$ld_matrices
)
Method check_phenotypes()
Usage
CAMERA$check_phenotypes(ids = self$exposure_ids)
Method cross_estimate()
Usage
CAMERA$cross_estimate(dat = self$harmonised_dat)
Method plot_cross_estimate()
Usage
CAMERA$plot_cross_estimate(est = self$mrres, qj_alpha = 0.05)
Usage
CAMERA$extract_instruments(exposure_ids = self$exposure_ids, ...)
Usage
CAMERA$extract_instrument_regions(
radius = self$radius,
instrument_raw = self$instrument_raw,
exposure_ids = self$exposure_ids
)
Method scan_regional_instruments()
Usage
CAMERA$scan_regional_instruments(
instrument_raw = self$instrument_raw,
instrument_regions = self$instrument_regions
)
Method plot_regional_instruments_maxz()
Usage
CAMERA$plot_regional_instruments_maxz(
instrument_region_zscores = self$instrument_region_zscores,
instruments = self$instrument_raw,
region = 1:min(10, nrow(instruments)),
comparison = FALSE
)
Method regional_ld_matrices()
Usage
CAMERA$regional_ld_matrices(
instrument_regions = self$instrument_regions,
bfiles = self$bfiles,
pops = self$pops,
plink = self$plink
)
Method susie_finemap_regions()
Usage
CAMERA$susie_finemap_regions(
dat = self$instrument_regions,
ld = self$ld_matrices
)
Method paintor_finemap_regions()
Usage
CAMERA$paintor_finemap_regions(
region = self$instrument_regions,
ld = self$ld_matrices,
PAINTOR = "PAINTOR",
workdir = tempdir()
)
Method MsCAVIAR_finemap_regions()
Usage
CAMERA$MsCAVIAR_finemap_regions(
region = self$instrument_regions,
ld = self$ld_matrices,
MsCAVIAR = "MsCAVIAR",
workdir = tempdir()
)
Method fema_regional_instruments()
Usage
CAMERA$fema_regional_instruments(
method = "fema",
instrument_regions = self$instrument_regions,
instrument_raw = self$instrument_raw,
n = self$exposure_metadata$sample_size
)
Method plot_regional_instruments()
Usage
CAMERA$plot_regional_instruments(
region,
instrument_regions = self$instrument_regions,
meta_analysis_regions = self$instrument_fema_regions
)
Usage
CAMERA$get_metadata(
exposure_ids = self$exposure_ids,
outcome_ids = self$outcome_ids
)
Method estimate_instrument_heterogeneity_per_variant()
Usage
CAMERA$estimate_instrument_heterogeneity_per_variant(dat = self$harmonised_dat)
Method mrgxe()
Usage
CAMERA$mrgxe(
dat = self$harmonised_dat,
variant_list = subset(self$instrument_heterogeneity_per_variant, Qfdr < 0.05)$SNP,
nboot = 100
)
Method mrgxe_plot()
Usage
CAMERA$mrgxe_plot(mrgxe_res = self$mrgxe_res)
Method mrgxe_plot_variant()
Usage
CAMERA$mrgxe_plot_variant(
variant = self$mrgxe_res %>% dplyr::filter(p.adjust(a_pval, "fdr") < 0.05) %>% {
.$SNP
},
dat = self$harmonised_dat
)
Method make_outcome_data()
Usage
CAMERA$make_outcome_data(exp = self$instrument_raw, p_exp = 0.05/nrow(exp))
Method make_outcome_local()
Usage
CAMERA$make_outcome_local(
exp = self$instrument_raw,
out = self$instrument_outcome_regions,
p_exp = 0.05/nreow(exp)
)
Method harmonise()
Usage
CAMERA$harmonise(exp = self$instrument_raw, out = self$instrument_outcome)
Method pleiotropy()
Usage
CAMERA$pleiotropy(harmonised_dat = self$harmonised_dat, mrres = self$mrres)
Method plot_pleiotropy()
Usage
CAMERA$plot_pleiotropy(dat = self$pleiotropy_outliers)
Method plot_pleiotropy_heterogeneity()
Usage
CAMERA$plot_pleiotropy_heterogeneity(
dat = self$pleiotropy_Q_outliers,
pthresh = 0.05
)
Usage
CAMERA$perform_basic_sem(harmonised_dat = self$harmonised_dat_sem)
Method runsem()
Usage
CAMERA$runsem(model, data, modname)
Method standardise_data()
Usage
CAMERA$standardise_data(
dat = self$instrument_raw,
standardise_unit = FALSE,
standardise_scale = FALSE,
scaling_method = "simple_mode"
)
Method clone()
The objects of this class are cloneable with this method.
Usage
CAMERA$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.